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CALCULATION OF POTENTIAL FLOW AROUND PROFILES
WITH SUCTION AND BLOWING*

K. Jacob

1. Introduction /51*

For some time now,4there have been investigations in aero-

nautical aerodynamics of flows around bodies where on a section

of the surface liquids are being sucked off or blown out. Such

flows play an important role, above all, in connection with prob-

lems of increased lift on airfoils. Thus, for instance, a separa-

tion of flow at large angles of incidence can be prevented on air-

foils by means of sucking off of slowed-down boundary layer material

or by tangential blowing out (energy supply into boundary layer);

that way, maximum lift can be increased. During lift increase by

suction, aside from the elimination of the boundary layer, the

so-called sink effect plays a certain role. It is produced by

superposing on the normal flow a flow (sink) directed in the form

of a jet toward the place of suction. By this means, the pressure

distribution on the profile is affected to a considerable extent.

As an additional example of an application of blowing, the crea-

tion of very large coefficients of lift by means of so-called jet

flaps should be mentioned.

*Abbreviated version of dissertation approved by the Faculty for
Mechanical Engineering of the Institute of Technology, Braunschweig.
Reviewer: Prof. Dr. H. Schlichting; Co-reviewers:Prof. Dr.-Ing.
H. Peterman and Prof. Dr. R. Ludwig. The author wishes to thank
Dr. F.W. Riegels, Gattingen, for the suggestion for this study
and for valuable advice during its completion. The experiments
were conducted in the Aerodynamic Testing Laboratory, G6ttingen,
with a subsidy from the German Research Association. The compte-.
hensive versiohnofothis dissertation was submitted as an Internal
Institute Report (60 A 43) to the Aerodynamic Testing Laboratory.

**Numbers in the margin indicate pagination in the foreign text.
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To date, these problems have been chiefly investigated by

experimental means.1 There exist theoretical studies on the sink

effect by F. Ehlers [1], C.B. Smith [2] and W.T. Lord [3]. In

all of these studies, the conformal representation is used for

calculating potential flow with suction, a method which is in

general quite unwieldy. Theoretical studies on jet flaps by J.M.

Davidson [4] and W. Jacobs [5] use the singularity method, but

restrict themselves to thin profiles. It is desirable, therefore,

to have a convenient method of calculation for potential flow

around arbitrary profiles with arbitrarily distributed suction

or outflow.

A method of this type is also desirable for another purpose,

that of representing flow separations. A flow separation forms a

so-called dead water, by means of which the external flow is

forced away from the body. This results in a considerable change

in flow pattern and pressure distribution around the body as com-

pared to the flow adjoining it. This displacement effect can be

determined as a calculated potential in accordance with a proposal

by F.W. Riegels if the dead water is replaced by a quantity of

fluid emitted from the profile. G. Jungclaus [6] has carried this

out for a plane surface.

Additional contributions to a mathematically arrived-at

potential calculation of plane flow separations have been made

by R. Eppler [7]. He makes use of the conformal representation

and seeks potential flows that possess constant pressure along

free flow lines, that issue from two fixed points of separation

and empty into two plates that are parallel to the initial direc-

tion of flow and that are located at some distance behind the body.

~;The static pressure between these two flow lines (dead water pres-
sure) is generally different from the static pressure of inflow."
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This results in a two-parameter solution with the positionoof

the poiht of separation and the dead water as free parameters.

For the purpose of calculating plane potential flow, there

is also, besides the conventional method of conformal representa-

tion and singularity distribution on the wing chord, the possi-

bility of profile contour distribution (vortices, sources, sinks).

This method is the most suitable and elegant for arbitrary thick /52

profiles, a fact that had already been perceived by L. Prandtl

[8] and W. Prager [9]. Lately, E. Martensen [10] and K. v. Seng-

busch [11] have applied this method to single and grid profiles.

Whereas Martensen deals with flows in which the normal component

of velocity on the profile contour disappears (pure flow about

a body), v.Sengbusch also admits normal component distributions

(blowing and suction) that deviate from zero but are constant.

The limiting to constant distribution of normal components is

connected with the fact that in this case an exclusive distribu-

tion of singulariities on the contour is being undertaken. If

the distribution of normal components is discontinuous or even

singular (single source), the tangential velocities as well as

the vortex distributions become infinitely large at the points

of discontinuity. However, this is quite troublesome for the

numerical treatment of the problem.

However, such discontinuous distributions of the normal com-

ponents are of special interest in some of the noted problems

(e.g. suction through a slot). Therefore,it will be advantageous

to try to split off the part of the tangential component contain-

ing infinity terms so that it can be represented analytically,

leaving only a finite balance to be determined numerically. This

splitting off can be managed in the following manner: the dis-

tribution of the normal component is represented by a correspond-

ing distribution of sources on the contour and each boundary source

is assigned a sink of half strength in the interior of the profile
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which is intended to receive the half of the source strength

which flows inward. This sink should be placed near the source,

but at a finite distance. It is now possible to calculate the

normal and tangential components of the zone of each such source-

sink arrangement and then to look for a vortex distribution on

the contour that makes the normal components disappear except in

the source itself. This normal component distribution, compen-

sated for by the vortex distribution, is constant throughout',

and its integral is zero. For this reason, the vortex distribu-!

tion and tangential velocities of the field of vorticity remain

finite (as long as the distance between source and sink does not

become zero). The addition of the tangential components of the

source-sink field and the vorticity field yields the unknown

resultant tangential components. As a result, the infinitely

large values are contained in the component of the source that

can be rendered analytically. In consequence of transferring

singularities .(sinks) into the interior of the profile, a velocity

remains in the interior of the profile, whereas it is zero for

a singularity-free interior.

The method for calculating plane, incompressible potential

flows around arbitrary thick, cambered profiles with arbitrary

constant, discontinuous or singular suction or blowing, as pre-

sented in the following chapters, is based on this reasoning.

For the time being, the method has only been worked out for flows

around single profiles, but it can also be expanded to encompassv,,.

grid flows.

Applying the method to suction flows does not present any

difficulties. However, for using the method for profiles with jet

flaps, an expansion of the method would be required so that not

only the profile contour but also the jet boundaries would receive

a vortex distribution. Not knowing its location,to begin with,

does in this case present a certain difficulty. The possibility
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of an approximate representation of flow separations is a special

advantage of this method. In order to determine the position,

distribution and strength of a given source distribution, the

points of separation and limiting conditions for dead water

boundaries must be known. The points of separation can be

obtained by means of boundary calculations. The fact that a

nearly constant pressure prevails in the dead water can be util'ized

as a condition for dead water limits. G. Jungclaus and R. Eppler

also made use of this fact, substantiated by measurements. In

contrast to the noted Eppler procedure, dead water pressure as a

free parameter is not applicable to our method because we limit

ourselves to potential flows in which there are no singularities

outside the profile. The proposed method is connected with some

calculating effort which, however, can readily be accomplished

by the use of an electronic computer. The method of computation

is first set forth in the following. Some remarks on the various

applications and calculated examples follow.

2. The Basic Concept of the Computing Method /53

The plane incompressible potential flow is to be calculated

for a specified thick, cambered profile with a uniformly curved

contour on which, at an arbitrary part of-the contour, a liquid

disappears or is emitted, corresponding to a specified continuous,

discontinuous, or singular source distribution on the contour.

A simple special form of such a flow can be exactly calculated

in a very simple manner. Given a source of strength +E and a

sink of strength -E/2 at a distance R, a flow is produced around

a circle of radius R in whose center is the sink and on whose

contour the source is located (Fig. la). This furnishes us with

the simplest form of a plane potential flow around a thick body

where a liquid is emitted or -- with reversal of signs -- enters.

Half of the liquid emitted by the source flows outward into

5



4 Kohtvrtt 

Fig. 1. Drawing depleting 
outflow on a circular cylinder, 
a) Sink at center of circle; 
b) Sink not in center and vor­
tex distribution on contour. 

infinity, the other half is 

absorbed by the sink located 

in the interior. 

However, it is also pos­

sible to arrive at the same 

external flow by locating the 

sink not in the center of the 

circle but somewhere on the 

inside of the circle at a finite 

distance h from the source (Fig. 

lb), and by means of an added 

vortex distribution of the con­

tour make all velocity compon­

ents on the contour, normal to 

the contour, disappear except 

the infinite one at the point of the source itself. Such a vor­

tex distribution does exist and is finite and continuous through­

out, but only if the normal components to be eliminated wn(s) are 

distributed over the contour (working length s) in a continuous 

manner and in a form allowing continuous integration and if the 

integral over the entire normal component distribution of pro­

file contour C, which must be eliminated, disappears; that is, if 

the following holds: 

Key 1. Circle 
2. Sink 
3. Source 
k. Contour 

fwn(s) ds = 0 (1) 

However, these requirements are met in this case: the normal com­

ponent induced by the source is constant, i.e., wnp = E/4TTR, the 

normal component originating from the sink is constant on account 

of the finite distance r(<j>), and Eq. (1) is also satisfied because 

the sink absorbes just the amount of liquid delivered by the 

source to the interior. 
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The latter method (sink somewhere in interior of profile) 

can also be applied to arbitrary thick profiles with uniformly 

curved contour. It is true that the normal velocity on the con­

tour induced by the source is no longer constant, but it is uni­

form; because close to the source the equation still holds; w n = 

= E/4irR, in which case R is now the radius of curvature of the 

profile at the location of the source. The following must be 

well understood: at the location of the source itself, the normal 

velocity is of course infintely large and it can not and may not 

be eliminated by the continuous vortex distribution. In the 

vicinity of the source, the vortex distribution should only com­

pensate for the velocity wn = E/4ITR and the effect of the sink, 

thereby causing the contour of the profile to remain arbitrarily 

close to the source as the contour of the profile. 

In place of the single source at one point of the contour, 

it is also possible to assume many elementary sources as existing 

closely spaced on the contour, i.e., a source distribution on 

one part of the contour. In principle, this does not change 

the solvability of the problem. 

The principal item of the procedure is the determination of 

the vortex distribution. The starting point is the vortex element 

dr = ylc(s)ds lying on the contour of the profile. At a point 

P(x, y) of the flow field, at a distance r from th3 vortex element 

(Pig. 2), it furnishes for flow-stream function \p the following 

part: 

where positive Yk(s) corresponds to a vortex rotating counterclock­

wise. 

7 



Pig. 2. Drawing for setting up 
the integral equation for the 
vortex distribution on the con­
tour of the profile. 

Key: 1. Vortex element 

Integration over the 

entire contour of the profile 

C then furnishes the following 

at point P(x, y) for the flow-

stream function: 

!P ^ ) = sLj-n(,)ln_L_&, (2) 

The derivation of the flow-stream function in the direction /5j 

of the profile tangent 3T/9t is the normal component of velocity 

induced by the vortex distribution: 

w 
"»r 

The normal component wnp, on the contour of the profile, Induced 

by the given source and sink distribution, shall be opposite and 

equal to: 

">nj = —"«,,, an tt - .-

or 

J L = k ~k J n{sVnji[$ds' =--f"^,) • (3) 

w nps is here again understood not to contain the normal velocity 

p(s)/2 which is supplied by the elementary source p(s)ds at the 

location s itself. 

Thus, (3) yields a first order integral equation for vortex 

distribution Yk(s)* -^ c a n b e converted to one of second order 

with a continuous kernel throughout, which is necessary for a 

numerical treatment. If now the Integral is replaced by a sum, 
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the result is a linear set of equations, the reduction of which 

yields the unknown vortex distribution. 

The tangential velocities induced by the sources, sinks and 

vortices at each contour point can now be calculated and added; it 

is now also possible to calculate the value of the flow function 

at each point of the flow field. The velocities yield the pres­

sure distribution on the profile; the flow function values pro­

vide the sign of the flow pattern. 

At first, there is a pure discharge or suction flow around 

the profile (Fig. 3d). It can then be superposed (Pig. 3e) with 

translation and circulation flows which can be calculated in 

accordance with Martensen. 

Pig. 3. Calculated flow patterns for a thick profile. 
[Continued on following page.] 
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Fig. 3 (cont'd.). a) 1. Basic flow: W, = 1, a = 00; r = 0;
b) 2. Basic flow: W, = 1; a = 900; r = 0; c) 3. Basic flow:
W, = 0, r = 2w; d) A pure outflow with constant source distribu-
tion q,() = const from A to E; e) Superposition of flow in
[Cilegible] 2a to 2d for a = 200 and separation at Stl and St2.

Key: 1. Profile

3. Method of Calculation

The following is the preparation of the formulas necessary

for practical calculations.

a) Single Source on the Contour of the Profile /55

First, the case of the single source (index Q) with corres-

ponding single sink of half force in the interior of the profile

(index S) is dealt with. The variations in the formulas result-

ing from conversion to continuous source distribution are given

in Section 3b.

Transformation:.of the Integral Equation

Equation (3) is an integral equation of the first degree

with singular kernel and, therefore, unsuitable for practical

calculation. However, it can be transformed into an integral

equation of the second degree with overall continuous kernel.

This is done in accordance with the above-mentioned study by

E. Martensen, where an integral equation occurs which differs

from (3) only by the right side of it.

A parametric representation x(f) and y($) is introduced

for the profile contour; it is assumed that x(¢) and y(9) are

periodically and twice continuously differentiable and that the

profile contour will rotate exactly once counterclockwise for c =

= 0 to 2wf. In addition, fori. dx/d~ = K(f), dy/d$ = 2($),~,)2 +
2

Y( )40 340 must always existaso that at each point a tangential

unit vector

10



can be defined. 

In addition, a transformed circulation distribution y (<j>) is 
introduced by means of the defining equation 

I#>#-WW* or n = i*rt >M__ (3a) 

Now, the integral equation (3), after some intermediate cal­

culation, can be converted to 

*» J » 

Y(V)—^ J L(<p> v) y(y) <fy = \ j w„os(v) Wrf +iJte)* « a . r ^ # (4) 

with 
l a 

t (y,T) = 1 _ - i - f H(x,q>) ctg ̂ p dx (4a) ,Y) = i—2» J H^v) cte ^f* d* 

and 

H(X, V) - 2 [ ^ - ^ p + LKH)-yW C t g ~ 2 ^ f " * ^ V ( 4 b ) 

and as limiting value 
i(*)*(x) + :y(*)y(*) 

Moreover, it can be proven that the following holds true: 

11 



This relationship, after transition to a finite score, can sub­

sequently be used for calculating the limiting value of H as a 

negative sum of the remaining values of H. That way, it is pos­

sible to avoid second derivatives that can give rise to inaccuracies 

when using numerical computations. 

The integral equation (4) is a Predholm integral equation 

of the second order with overall continuous kernel and is solvable, 

as has been shown by Martensen. 

Linear Set of Equations for Computing Outflow 

For the purpose of numerical computation, the profile at 2N 

shall be given in <)> equidistant contour points P (x , y ) with 

(f> = y2iT/2N and y = 0, 1, ... (2N - 1). 

Using the simple quadrilateral formula for the numerical 

integration of the left side of (4) and a formula given by Marten-

sen for the numerical computation of the cotangent integral in 

(4) and (4a), the following linear set of equations for determin­

ing the vortex distribution is finally arrived at: 

»ir-i » » - » 
v — V L..Y. — 2 L *WJ,,+, 

(5) 

w i t h 

/i = 0, l ,2 . . . (2 7V--l), 
. 1 —(— 1)' Vr 2 * 

*•' 2N—ctRT' 7'-VTN' (5a) / 5 6 

\r.....: Jp^r^d,m, +'££&£ ~.V V:-"••:>" (5b) 
J . — I 

£*r = *• ££•;Hut*,»*'.' - - ~' . (5c) 

(5d) 
u - 2 &Z!&** ± Cri.—y»)y» c t c

 0l~l2?-" : Ciir" i* & r H " = 2 (x,-x,)q:(^y,j' c t g - - f T W ^ ~ ^ r * ^ r 

12 



and in accordance with (4c) 

-3t 
IN—t 

for y = v 

The derivatives of the coordinates with respect to <|>, required 

for (5b) and (5d), are easily derived in accordance with Marten-

sen from the formulas 

iN— l — -

»—l -~* --= 

IN— I 

with B , = * y 4 - - c tg^ . (5e) 

Finally, also required for (5b) are the normal components (wnpS^uJ 

induced-by source and sink at contour points P (x„, Yu)• As shown 

in the comprehensive version of this study, the following formula 

is arrived at: 

with KCsV '= (
w»«k + *,r"s^ 

Ke),. = 

,QS 

E 
for P.̂ r P0 

and as limiting value in accordance with 1'Hospital 

K<?),. 
xi* ~ yp y?• xp 

2«yi j+yj 2 (*?.+#) 
- f o r P « ^ P 0 

(6) 

(6a) 

and 

Ks) - r -
— g/2 ," "(«„•- *s) j> — (y,i—ys) *>. (6b) 

For this, x , y or xs, ys are the coordinates of source or sink, 

and E is the strength of the source. 

In order to make the set of equations (5) unique, it is still 

necessary to determine the total circulation. For a given position 

13 



and strength of a source, there are an infinite number of out­

flows around the specified body, depending on how large the total 

circulation is. Therefore, we add the condition that the total 

circulation shall be zero: 

and in consequence, we omit any of the 2N equations of (5). The 

set of equations now yields the vortex distribution on the contour 

of the profile which jointly with the source-sink flow results in 

a circulation-free potential flow around the specified profile, 

while at the point of the source there occurs a source-like outflow. 

The tangential velocity at the outer border of the contour 

at point Py is composed of the portion originating in the source-

sink flow and the portion originating in the vortex distribution: 

These portions result in (cf. the comprehensive version): 

and 

/i—>•<?) y// i <*/« — * ) * . . + ?:»—rs) y„ \ 
v—yq?- - 2 > M - * . , ) • + o>—ys)» J (8a) 

/57 

(8b) 

w i t h 
KM , = (5"ZLi') n ~ 6> —*) *, ... 

*" IT «-W -L / - I T . . v» fur 

and K„ = N— 2; A',,, fur 
/<-0 

<*„ -<.%)»+ (yZ-y,)* fUr r»* /" 

z/r fur r = fi. 
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Superposition of Pure Outflow with Translation and Circula­
tion Flow 

As has been shown by Martensen, it is possible also to com­

pute other flows around the profile (without blowing) by means of 

'the set of equations (5) (Fig. 3a-c) if the right side is changed. 

For the so-called first basic flow (parallel flow in x direc­

tion with flow velocity Wro = 1, circulation r = 0, angle of attack 

against the x axis a = 0) the right sides are: 

tJV—1 

Rm„ = 2 £ Ary„+, 

with Av from (5a). 

For the second basic flow (parallel flow in y direction with 

Woo = 1, r = 0, a = 90°) the following holds: 

JW-l 

fl»„ = — 2 £ A*„+" 

For the third basic flow (pure circulation flow with W„ = 0, 

r = 2-irl'l where 1 is the depth of the profile) the following applies 

R = 0 
cy 

And in (7) the following must be substituted: 

For the first basic flow: r = 0 

For the second basic flow:r = 0 

For the third basic flow: r = 2*1*1. 
The resulting ya, y-^, yc then yield directly by way of (3a) the 

p so-called basic velocities w , w, , w ; these are then relative 

2 
Martensen has shown that for basic flows without blowing, the 
vortex distribution Yk is identical with the tangential velocity 
at the outer border of the contour because the velocity is zero 
everywhere in the interior of the profile. 
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to WOT or r/2irl. It is now easy to calculate compound flows by 

means of simple superposition (Pig. 3 ) . The compound tangential 

velocity at the contour of the profile at point Pv is 

*L =;>K), 4- &(n), + cM, + g(wX . (9) 

For this, the so-called superposition factors are 

o = co9<x, (9a) 
* = sina, (9b) 

r e , 
e = i^ri = -W (9c) 

The superposition factor g results in the following if in the 

computation of w.j. strength E = 2irl«l 

E 

A negative g results in an outflow instead of a suction flow, 

(9d) 

If for compound flow, stagnation points are assumed to exist 

at certain locations on the profile, the condition there must be 

wv = 0, i.e., 

su + c(w,)s.i + «(M>,)SII = 0,1 

s.» + cK)su + «K)s.j = o,J (9e) 
°(u>a)sa + &K)sn + C(M>.)S.I + «(w,)sn = 0 , 

o(n.)sn + 6(»«k) 

in which case the indices Stl and St2 indicate the points of /58 

stagnation, i.e., (w )„,,) etc. are the value's of the basic 

velocities at the points of the profile where the stagnation 

points are supposed to be located. If the angle of attack a is 

given, that is, if a and b are fixed, Eqs. (9e) will then yield 

c and g. 

16 



Flow-Stream Function, Flow Pattern 

In order to be able to plot the flow pattern, the flow-

stream function "P must be calculated at many points of the flow 

field. Equation (2) furnishes the portion of a vortex distribu­

tion for the flow-stream function at point P(x, y) 

^r(*,y) = 2 I— I ykln — dn 

By using (3a) and r = /[x - x(cf>)] + [y - y(<|>)] and integration 

In accordance with the rectangular formula, the following formula 

is obtained 

i I N — 1 

f+*r-TTN £ *>*&-**>*t T ^ ' doa) 

The portion originating in source and sink is 

V*, ?) = £«<,—g«s (10b) 

with ap = arctan [(y - yp)/(x - xp)] and as = arctan [(y - yg)/ 

/(x - Xg), where a lies between 0 and 2TT depending on the sign 

of Ay and Ax. 

For superposition of parallel flows with Woo = 1, the follow­

ing Is added: 

.̂(r) = y and y/»(*) = —*. (10c) 

In case of superposition of the three basic flows and the outflow 

with the factors a, b, c, g, the following applies: 

n*,y) - a {?/,) + Wy.(X,y)] + b (!PlW + Vyh(x,y)] + eVyAx,y) + g ^QS{X,y) + <I'yQS(X,y)] . ( 11 ) 
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b) Transition to Continuous Source Distribution 

It is possible to proceed in accordance with the same princi­

ple as for a single source when dealing with a case of continuous 

source distribution q(<j>) on a section of the contour. For this, 

it is necessary to place many elementary sources on the "source 

line" of the profile and to assign an elementary sink of half 

strength to each elementary source which might lie at a distance 

h on the normal, oriented toward the interior of the profile. 

The normal components (wnqS) , induced by the source and sink 

distribution, will yield the right sides of the set of equations 

(5)« In all other respects, the computation is exactly the same 

as before. 

Location and form of source distribution must be given for 

calculating w n q s and w-^qS. The source line is to be in the form 

*,(<p) = ao + ai<P + aifx+ \-«„<pm, y1(<p) = bo + bi<p + t>t<p2+ \-bm<pm. ( 1 2 a ) 

The polynomial coefficients can be determined from linear sets of 

equations by means of m + 1 contour points PyCx^, yy) given in 

the area of the source section. In that case, the coordinates of 

the associated elementary sinks are [12]: 

Y*J9T+r&P y±»(v>),+r,(7>)» K ± t u ) 

The normal component d(wnqs) induced at contour point Py by the 

elementary source q(cf>)d<j> and the elementary sink —pq(<j>)d<j> belong­

ing to it can be determined in accordance with (6) and integrated 

over the source section. 

In the same manner, the tangential velocity in Py can be 

arrived at by integration of the components of d(w^as)lJ which is 

calculated in accordance with (8a). 
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The right sides of the set of equations (5) can then be cal­

culated by means of (wnqS) . The solution yields (Yqs)u
 and (8b), 

once again (ŵ ,.) . When computing (w-j-)y in accordance with (8), 

(wtqs)y n o w replaces ( w t Q S ) y . 

The following replaces (10b) for computing the flow-stream /59 

function fqS(x, y): 

^(^) = ̂ /^)(-g^^l«ct/^Sg))^. (13) 

^. Examples of Computations, Applications 

First, the procedure should undergo ; a test by comparing 

the velocity distribution with the exact solution for the circular 

cylinder with point blowing. Furthermore, the practicability of 

the method will be made plausible by showing that "plausible" 

velocity distributions and flow patterns emerge for a rather 

common profile, first, for pure outflows and, finally, also for 

superpositions with parallel and circulation flows. Results are 

to be considered as "plausible" when they can be anticipated, at 

least qualitatively, in accordance with the potential theory. 

Finally, some possible applications of the method will be dis­

cussed, namely the computation of flows with suction, of flow 

separations and of flows around airfoils with jet flaps. Some 

comparisons with measurements are also carried out for flow 

separations. The computations are always made with 2N = 36 

plotted points. The most important data of the examples of 

computations are given in the illustrations. 

a) Circular Cylinders with Single Sources 

As shown in the comprehensive version, the following applies 

exactly as shown to the circular cylinder with point outflow 

(Fig. la): 
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"•^l^R^H^' (14) 

where Q = E/2 represents the quantity flowing to the outside, R 

is the radius, and <J> - <J)Q represents the angle at the center 

between the contour point under consideration and the source 

point. 

In order to see whether the method under consideration (Pig. 

lb) would yield the same results and how much the distance of 

the sink from the source h/R would affect the accuracy of the 

results, a computation for a single source +E at <J>Q = 45° and 

with a sink -E/2 at various distances h/R was carried out. The 

greatest deviations are found at the (greatest) values in the 

vicinity of the source. The relative deviations for this region /60 

are given in Table 1. The relative deviations are already in 

all cases smaller than 1% at h/R = 0.2 and diminish with increas­

ing .h/R. At a very small h/R, the results oscillate around the 

exact solution. A changeover to a larger number of plotted 2N 

points or simply a smoothing-out should still give good results, 

even at h/R =0.1 (Fig. 4). 

TABLE 1. RELATIVE DEVIATIONS OP TANGENTIAL COM­
PONENTS PROM EXACT VALUE FOR THE CIRCULAR CYLIN­
DER WITH SINGLE SOURCE (<j>p = 45°); h = DISTANCE 
OF SINK -E/2 FROM SOURCE +E; COMPARE FIGURE 4. 
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V W ef 'Hf 9r *»• . jw* 

Pig. 4. Velocity distribution for 
pure outflow around the circular 
cylinder with a source having strength 
E on the contour at <{>Q = 45° • : 
exact solution in accordance with 
Eq. (14); 0: method under considera­
tion with h/R = 0.1. 

40» and so" 
30° and 60° 

r i "I e»«cl 

A/R-tM 

"lex«Cl 

A / R - 0 . 2 

f o r 

0,081 

t),032 
0,006 

0,008 
Of Id 

0 IW 

Fig. 5. Profile 7, shape and selec­
ted point distribution. 

b) Profiles with Source 
Distributions 

To begin with, addi­

tional calculations were 

based on the thick", cambered 

profile (profile 7) repre­

sented In Pig. 5- In 

addition, continuous source 

distributions were now used 

in place of the single 

source. Profiles NACA 2412 

and Go 801 were used for 

comparison with measurements. 

Figure 6 shows the 

flow pattern and Fig. 7 

the velocity distribution 

for a pure source flow with 

constant source distribu­

tion on a section of the 

contour; they are the . 

outcome of proceeding in 

accordance with the method 

under consideration. Both 

appear to be quite "plaus­

ible." 

For a practical appli- /6l 

cation, it is now necessary 

to superpose the circula­

tion-free pure flow due to 

blowing with translation 

and circulation flows in 
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Pig. 6. Calculated flow pattern for a pure outflow around 
profile 7 at constant source distribution q(<f>) = 1 from A 
to E, distance of sink h/1 = 0.035- a. Source line; 
b. sink line. 

such a way that certain specified conditions relative to initial 

direction of flow, stagnation point, quantity of outflow or suc­

tion, jet boundary, circulation, etc., are being fulfilled. It is 

never possible to specify more than a few quantities. It can be 

seen from formulas (9a) to (9e) that all superposition factors are 

fixed if three of the quantities a, T, E, Stl and St2 are given, 

as long as a certain form and position of source distribution are 

used as a basis. Form and position of source distribution offer 

additional degrees of freedom to be skillfully utilized for certain 

objectives (e.g. representation of a flow separation). 

Plow with Suction /62 

Form and position of source distribution on the profile and 

the entire quantity -E to be sucked off are given in case of a flow 

with suction. Added to this are Kutta's outflow conditions for the 

location of the rear stagnation point and, of course, the given 

angle of attack a. Given this, all superposition factors can be 

calculated. 
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A flow with suction 

in the vicinity of the lead­

ing edge of the profile was 

calculated for profile 7 

(Fig. 8). For this, a sink 

distribution q(<f>) = const 

with the location specified 

in Fis having the quan­

tity coefficient CQ = 

= Q/(WooL • 1 ) = -0.10 was 

selected; the rear stagna­

tion point lies at p = 0 

and the angle of attack is 

a = 10°. Figure 8 shows 

the flow pattern and Fig. 9 
Fig. 7- Velocity distribution for a .. .. ,. 

, „-, , „., n , the pressure distribution pure outflow around profile 7 at con- v 

stant source distribution q($) = 1 from with and without suction. 
A to E (see also Fig. 6) and sink dis- „. „ , - , . - , . . , , \_ n nnr v, *. Figure 9 clearly indicates 
tance h/1 = 0.035. p = number of to ° 
points (see Fig. 5). the lowering of the suction 

Fig. 8. Calculated flow pattern for flow around profile 7 with 
leading edge suction; sink distribution q(<f>) = const from A to E, 
quantity coefficient CQ = -0.10, angle of attack a = 10°. 
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Fig. 9. Pressure distribution c = 

= (p - p»)/(|-w£) at profile 7 during 

flow without suction and with lead­
ing edge suction in accordance with 
Fig. 8; a F 10°. 

peak by means of the leading 

edge suction with CQ = -0.10 

Sucked off quantities are 

much smaller for boundary 

layer suction, so that 

changes in potential flow 

due to suction should not 

be of any importance there. 

Flow Separation 

The calculated poten­

tial representation of flow 

separations is another 

interesting application of 

the method. Think of the 

dead water area filled with 

the liquid emitted from the 

profile. It is assumed to 

have been furnished by 

The source distribution is to be sources located on the contour, 

selected in such a way that at "dead water boundaries" close to 

the profile a nearly constant pressure prevails which is then to 

be regarded as applying to the entire dead water. By this means, 

the dead water pressure and the displacement effect of the dead 

water on the external flow of the theoretical calculation are to 

be made accessible. 

At first, it might seem surprising that dead water flows, 

where friction plays a very decisive role in their formation, 

should be considered, at all as computable in terms of potential, 

i.e., without friction. However, friction is taken into account 

to the extent of acknowledging a dead water as existing at all 

and also meeting a condition for the dead water boundaries that 
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corresponds to the "reality of friction." Inside the dead water,

it is of course not possible to determine the actual flow by

means of our calculated potential method; it can, however, be

done at the dead water boundaries and outside the dead water.

The only assumption is that at the dead water boundaries and

outside the dead water, the flow behaves like a potential flow

with the boundary condition that from certain points on (the

separation points), the pressurev.along as yet unknown boundary

lines (the dead water boundaries) is nearly constant in the

vicinity of the profile. The lines are calculated in terms of

potential as boundary lines of a quantity of liquid emerging

from the profile.

With such a:,potential flow, the "dead water" will always

extend to infinity, in which case the pressure will asymptotically

approach p,, whereas a real dead water has a finite range, and

experience has shown that a reduced pressure prevails in a dead

water. However, it is only necessary to correctly imitate the

dead water in the vicinity of the profile by means of an outflow,

since the shape of the dead water at some distance from the profile

should no longer have any noticeable influence on the flow at the,>

profile. However, by limiting oneself to the immediate vicinity

of the profile, it is quite possible, as will be shown, to cor-

rectly imitate the dead water.

First, in the case of a flow separation, the angle of attack

c and the points of separation -- possibly on the basis of a pre-

ceding boundary line computation -- can be regarded as given. A

certain form and position of the source distribution between

the points of separation will then furnish a certain "dead water

region" that in general will not as yet meet the conditions of

constant pressure at the dead water boundaries. The comprehensive

study shows first of all that the shape of the "dead water" can be

strongly influenced by the form and position of the source distribu-

tion. Finally, further experiments showed that the best way to
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attain nearly constant pressure at the separation lines close to

the profile is by locating a constant source distribution between

the two points of separation close to these points. It is still

necessary though to systematically vary the total quantity of

outflow (by means of the superposition factor g) and the strength

of the circulation flow to be superposed (by means of the super-

position factor c) until the specified condition close to the

profile has been fulfilled as much as possible. Now, the super-

position of the four basic flows by factors c and g, found as

noted, and factors a and b, already fixed by the angle of attack

a, yield the velocity and also the pressure distribution on the

profile outside the dead water. A constant pressure is assumed

for the dead water, i.e., the pressure determined for the separa-

tion lines is transferred to the profile.

As noted, the points of separation must be known for a

computation of flow separations in terms of potential. A theoreti-

cal determination of the points of separation by means of a combi-

nation of the method under consideration and boundary line computa-

tions should be feasible. However, in order to arrive at first /63

comparisons between theory and measurements and consequently to

eliminate unavoidable uncertainties in the theoretical determina-

tion of the points of separation, the points of separation in

the following examples were taken from measurements (break in

pressure distribution).

Figure 10 presents a comparison between theory and a measure-

ment [12] for a flow separation on profile NACA 2412. The pres-

sure distribution for a potential flow without separation has also

been plotted in this diagram.

A further comparison with measurements was undertaken by

K. Kraemer [13] on profile Go 801. In Fig. 11 a comparison

between theory and measurement with and without separation has

been plotted.
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to V 9* Of us 

Pressure distribution 
•P«2-

Fig. 10 
cp = (P - Pco)/(̂ -Ŵ ) on profile 

NACA 2412 with flow separation. 
Theory without separation 
a = 16.3° yields ca = 2.09 

— — Theory with separation at 
x/1 = 0.21, a = 16.3° yields 
(̂  = 0.00 
Estimated transitions for 
theory with separation; 
Measurement for rectangular 
wing without vertical fins 
with A = 5, Re = 2.7-106, 
ag = 17-9° yields in cross 
section: a = 16.3° 
• 0.95. 

Key: 1. Dead water 

• 0 

ca • 

Fig. 11. Pressure distribution 
cp = (P - Poo)/(|-wi) on profile Go 

801 with separated and with adjac­
ent flow. Top diagram: 

Theory with a = 8.1° and sepa­
ration at x/1 = 0.25 yields 

ca_= 0.63 and cwp = 0.087. 
t |J Measurement by Kraemer, Re = 

3.2-1CH, Re = 4.2-1011, ex = 
= 8.1°: Co = 0.6l and c,r0O = 
= 0.085. 

Bottom diagram: 
V A Measurements by Kraemer, 

Re = 1.47-105, Re = 4.2-105, 
a = 4.3°, ca. = 1.19. 

Key: 1. Dead water 

An especially good consistency of measuring values occurs 

in both cases with regard to pressure distribution on the pres­

sure side. The theoretical dead water pressure also comes quite 

close to the measured one. Greater deviations occur on the pres­

sure and suction side in the vicinity of the points of separation, 

The points of separation are points of stagnation at constant 
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source distribution in the potential theory. For this reason, 

cp is always equal to 1. However, this is not logical from a 

physical standpoint and it is, therefore, better to revert to 

estimated curves for the theoretical dead water pressure (dotted 

curves in Figs. 10 and 11). In that case there remains a certain 

amount of uncertainty. 

Lift coefficients have also been given in Figs. 10 and 11; 

in this respect also there is good consistency of measuring 

values between theory and measurement. 

The theoretical lift coefficient was calculated from ca = 

= 4TTC (Eq. (9c)) after the superposition factor for pure circula­

tion flow c had been found in the noted manner. 

The theoretical pressure drag coefficient cWp which had also /64 

been given in Fig. 11 was determined by means of formula: 

cwj» = f*P cos a. + ryf sin a , 

in which cxp or cyp are the coefficients of the pressure forces in 

the x or y direction that were obtained by integration of the 

dimensionless pressure distribution plotted against y/1 or x/1. 

Frictional resistance must be added to pressure drag (cWp = 0.087) 

which, however, in the present case is of no great moment as com­

pared to the pressure drag. 

Flow Around an Airfoil with a Jet Flap 

The application of the method to arbitrary jet flap flows is 

somewhat difficult. A flow of this type with blowing out at the 

rear part of the pressure side is shown in Fig. 12 and the corres­

ponding pressure distribution in Fig. 13. However, with a given 

angle of attack and two stagnation points (jet width at profile), 
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Fig. 12. Calculated flow pattern for flow around pro­
file 7 with "jet flaps"; source distribution q(<J>) = 
= const from A to E, a = 0° and stagnation points Stl 
and St2 given; this yields: quantity coefficient of 
blowing CQ = 0.050. 

the total emitted quantity can only be changed within narrow limits 

by the form and position of the source distribution. It is 

especially difficult to readily obtain flows with large quantities 

of outblow at small outblow slits. Such flows certainly show great 

velocity jumps (vortex distributions) at the jet boundaries which 

at first were not incorporated in the method. It would be possible 

to add such vortex distributions. To be sure, where the jet bounda­

ries would have to be applied is unknown to begin with. However, 

it is perhaps possible to find the way by means of iteration. 

5. Summary and Outlook 

A method of computation has been developed for computing 

plane incompressible potential flows around arbitrary thick, 

cambered profiles with continuous or discontinuous blowing or 

suction. It works with source and vortex distributions on the 

contour of the profile and in the interior of the profile. An 
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Pressure' distribution cp = Fig. 13. 

= (P - Poo)/(^w2) on profile 7 with 

a 10° Without jet flap; 
With "jet flap" in accordance 

with Fig. 12. 

integral equation for the 

vortex distribution on the 

contour of the profile is 

arrived at, the solution of 

which is reduced to a linear 

set of equations. Finally, 

the method yields the 

velocity and pressure dis­

tribution on the contour 

of the profile and the 

flow-stream function for 

plotting of the flow pattern, 

The method is well 

suited for use in digital 

electronic computers and 

was programmed for the IBM 

650. A series of example 

About 1 hour of computing time is computations was carried out 

required for the velocity and pressure distribution of a flow, 

about 1.5 hours for the flow pattern. 

The practicability of the method was established for the 

circular cylinder by comparing the velocity distribution with the 

exact solution, and on some thick, cambered profiles by compari­

son of the theoretical pressure distribution with measurements. 

The following perspectives present themselves for a practi- /65 

cal application of the method. A change in the potential flow by 

means of suction is readily obtained. A representation of flow 

separations is possible but requires a trial-and-error method 

in order to meet boundary conditions at the boundaries of the 
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"dead water zone." An application of the method for flows around

profiles with jet flap will generally not be possible unless the

jet border is also equipped with a vortex distribution and pos-

sibly also with a sink distribution.
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